CHROM, 8957

CHROMATOGRAPHIE EN PHASE GAZEUSE AVEC "BACKFLUSHING" ET AVEC PROGRAMMATION DU GRADIENT LONGITUDINAL POSITIF DE TEMPERATURE DURANT L'INVERSION DU SENS DU GAZ VECTEUR

RAMDAN BELABBES, PIERRE LE PARLOUER et JEAN-MAURICE VERGNAUD

Département Chimie, U.E.R. de Sciences, 23 rue du Docteur Michelon, Université de Saint-Étienne, Saint Étienne 42100 (France)

(Reçu le 25 septembre 1975)

SUMMARY

Gas chromatography with backflushing and with programmed longitudinal positive gradient of temperature during backflushing

A new method of gas chromatography with backflushing is presented. It may be defined as a two-stage operation. The first stage uses a carrier gas flow running in the usual direction while the column is isothermal. In the second stage, the gas flow is reversed and a positive longitudinal gradient of temperature is programmed at a constant rate. The more volatile solutes are thus eluted with classical chromatography, and the less volatile solutes are eluted with the backflush and the programming of temperature. The apparatus used is described and a theory of retention of solutes is set up. The advantages of our technique over classical backflushing gas chromatography are demonstrated: decreased retention times, peak skew, and a good separation of the solutes.

INTRODUCTION

La chromatographie avec inversion du sens du gaz vecteur (backflushing) est bien connue lorsqu'elle est réalisée de façon isotherme^{1,2}. Cette méthode permet d'éluer lors du sens direct les solutés volatils; au temps de backflushing t_{bf} , le sens du gaz vecteur est inversé, et les solutés les moins volatils sont alors regroupés en un seul pic. Le temps de rétention des solutés les moins volatils est légèrement inférieur au double du temps de backflushing, quelle que soit la volatilité de ces solutés. Ainsi, cette chromatographie permet d'analyser à basse température la quantité globale des produits peu volatils situés dans un mélange.

Dans de nombreux cas, l'analyste peut être intéressé par la détermination des composés peu volatils du mélange. Ainsi, le problème posé est de réaliser la séparation des composés peu volatils élués durant le sens inverse de la chromatographie avec inversion.

Nous proposons une méthode permettant d'atteindre cet objectif: la chro-

matographie avec inversion du sens du gaz vecteur et avec programmation du gradient longitudinal positif de température durant l'inversion. Le principe de cette méthode est ainsi défini: durant le sens direct du gaz vecteur et pendant le temps de backflushing t_{bf} , les solutés les plus volatils sont élués de façon isotherme; au temps t_{bf} , on réalise simultanément l'inversion du sens du gaz vecteur et la programmation du gradient longitudinal positif de température. La vitesse d'élévation du gradient longitudinal de température est constante. D'autre part, le gradient est réalisé de telle sorte que la sortie de la colonne durant l'inversion est portée à la température la plus élevée, alors que la température de l'extrémité opposée de la colonne demeure constante.

PARTIE EXPÉRIMENTALE

Les conditions expérimentales étaient comme suit. Chromatographe, Perkin-Elmer F7 équipé de la vanne de backflushing (Perkin-Elmer, Norwalk, Conn., É.U.); colonne, acier inoxydable (2 m × 4.65 mm I.D.); phase stationnaire, squalane (20%) sur Célite R (45–60 mesh) poids 18.54 g (Touzart et Matignon, Paris, France); débit du gaz vecteur, 48.4 ml/min d'hydrogène; température initiale de la colonne, 60°C; vitesse de programmation du gradient longitudinal, isothermal, 0.1 °C/msec, 0.25 °C/msec, 0.5 °C/msec, successivement; temps d'inversion choisi, 500 sec, 800 sec, 1000 sec et 1500 sec successivement; solutés injectés, n-pentane, n-hexane, n-heptane, n-nonane, n-décane, n-undécane et n-dodécane (Touzart et Matignon).

Le gradient longitu linal de température est réalisé à l'aide d'un fil résistant de 41 Ω/m gainé de matière plastique isolante. Ce fil résistant est enroulé autour de la colonne de telle sorte que la longueur de fil par unité de longueur de la colonne varie le long de celle-ci selon une progression arithmétique³. A la sortie de la colonne durant l'inversion, la longueur de fil chauffant enroulé par cm de colonne est égale à 2.95 cm, et la raison de la progression est égale à 0.015 cm de fil chauffant par cm de colonne, de telle sorte qu'il n'y a pas d'enroulement de fil à l'entrée de la colonne. La programmation linéaire du gradient longitudinal de température est réalisée en alimentant le fil chauffant avec une tension électrique programmée avec le programmateur de température.

La propagation des solutés en chromatographie isotherme est définie par les éqns. 11 et 12 dans lesquelles apparaissent la constante A, l'enthalpie de vaporisation du soluté en solution avec le solvant, et le temps de rétention du gaz vecteur. Nous réunissons les différentes valeurs de ces constantes qui sont en bon accord avec celles que nous avons pu mesurer précédemment³.

TABLEAU I VALEURS DE L'ENTHALPIE STANDARD DE VAPORISATION DU SOLUTÉ EN SOLUTION AVEC LE SOLVANT, ΔH_v^0 , ET DE LA CONSTANTE A POUR LES SOLUTÉS Les valeurs de ΔH_v^0 sont exprimées en cal/mole. C5 = n-pentane, etc.

Paramètre	Soluté									
	C5	C6	C7	C9	C10	CII	C12			
ΔH ₀ °	4630	6200	7360	9430	10 120	11 000	11 450			
A-105	745	161	72.5	18.6	15.5	8.9	7.1			

PARTIE THÉORIQUE

Le principe de la méthode est celui-ci: durant le sens direct le soluté peu volatil i parcourt l'abscisse x_i durant le temps t_{bf} , en chromatographie isotherme. Au temps t_{bf} le sens du gaz vecteur est inversé et simultanément est mise en route la programmation du gradient longitudinal positif de température (Fig. 1). Le temps nécessaire pour que le soluté parcourt l'abscisse x_i en sens inverse est appelé t'_{ri} avec notre méthode, et t''_{ri} en chromatographie avec inversion isotherme.

Nous calculerons les temps de propagation du soluté élué avec notre méthode, durant le sens direct et durant le sens inverse.

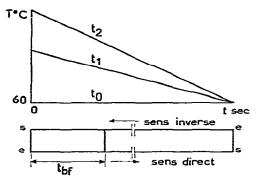


Fig. 1. Schéma représentant la colonne et le principe de la méthode.

Chromatographie isotherme durant le sens direct

Nous formulons l'hypothèse simplificatrice que la vitesse du gaz vecteur est constante tout le long de la colonne. En effet, la perte de charge de notre colonne est faible, et nous avons vérifié que cette hypothèse ne perturbe pas nos résultats. Ainsi, la vitesse du soluté i est donnée par la relation

$$\frac{\mathrm{d}x}{\mathrm{d}t} = \frac{L}{t_{\mathrm{rT}t}} \tag{1}$$

en appelant t_{rT_i} le temps de rétention du soluté i élué à la température T avec une colonne de longueur L.

Durant le temps t_{bf} pendant lequel la chromatographie est isotherme et en sens direct, le soluté i a parcouru une longueur x_i telle que

$$x_l = t_{bf} \cdot \frac{L}{t_{rT_l}} \tag{2}$$

Le temps t''_{r_i} nécessaire au soluté pour parcourir l'abscisse x_i de façon isotherme est alors égal à t_{bf} . Evidemment lorsque le temps t_{bf} est supérieur au temps t_{rT_i} , le soluté i sort de la colonne et ne subit pas l'inversion.

Propagation du soluté durant le sens inverse avec notre méthode

Nous formulons deux hypothèses, en plus de celle que nous avons déjà exprimée:

- (a) L'équilibre thermique est réalisé à chaque instant au cours de la programmation du gradient de température;
- (b) l'équilibre thermodynamique du soluté entre les deux phases est rapidement atteint.

Avec notre méthode, la valeur du gradient longitudinal de température croît linéairement avec le temps. La température locale est donc une fonction des deux variables indépendantes: abscisse x le long de la colonne et temps t; sa variation peut se représenter par la différentielle totale:

$$dT = \left(\frac{\partial T}{\partial x}\right)_{t} dx + \left(\frac{\partial T}{\partial t}\right)_{z} dt$$
 (3)

La valeur du gradient longitudinal de température au temps t est égale à

$$\left(\frac{\partial T}{\partial x}\right)_t = \frac{V_0 \cdot t}{L} \tag{4}$$

en appelant V_0 la vitesse d'élévation de la température de la colonne à la sortie.

En un point de la colonne d'abscisse x, la vitesse linéaire d'élévation de la température est

$$\left(\frac{\partial T}{\partial t}\right)_{x} = V_{0} \cdot \frac{x}{L} \tag{5}$$

On constate aisément (Fig. 1) que la valeur de la température T_{xt} de la colonne à l'abscisse x prise au temps t est définie par

$$T_{xt} = T_{00} + V_0 \cdot t \cdot \frac{x}{L} \tag{6}$$

En remplaçant les dérivées partielles par leur valeur, l'éqn. 3 s'écrit

$$dT = V_0 \cdot \frac{x}{L} \cdot dt + V_0 \cdot \frac{t}{L} \cdot dx \tag{7}$$

Cette éqn. 7 peut se transformer en remplaçant dt par sa valeur tirée de l'éqn. 1, et t calculé dans l'éqn. 6. On obtient alors

$$\frac{dT}{dx} = V_0 \frac{x \cdot t_{rT}}{L^2} + \frac{T - T_{00}}{x} \tag{8}$$

Cette équation, quoique présentée avec des paramètres différents, est semblable à celle que nous avions obtenue précédemment⁴, en étudiant la rétention en chromatographie en phase gazeuse réalisée avec un gradient longitudinal positif de température.

Dans notre méthode de chromatographie actuelle, nous devons modifier cette éqn. 8 afin de tenir compte des conditions aux limites: au temps t=0, pour $x=x_i$, nous avons: $T=T_{00}$ et $\mathrm{d}T/\mathrm{d}x=0$. L'équation fondamentale dérivée de l'éqn. 8 est donc

$$\frac{dT}{dx} = \frac{V_0 \cdot t_{rT}}{L^2} (x - x_i) + \frac{T - T_{00}}{x - x_i}$$
(9)

Cette éqn. 9 nous permet de calculer la température du soluté en tout point de la colonne, et notamment la température à la sortie de la colonne que nous appèlerons la température de rétention T_r . La valeur de T_r permet de calculer le temps t', nécessaire au soluté pour parcourir l'abscisse x_i en sens inverse avec notre méthode. En effet, l'éqn. 6 permet d'écrire

$$t_{\rm r}' = \frac{T_{\rm r} - T_{00}}{V_{\rm o}} \tag{10}$$

Le temps de rétention du soluté i élué en chromatographie classique avec le sens direct est défini par la relation

$$t_{rT_i} = \frac{t_{gv}}{R_{f_i}} \tag{11}$$

 t_{gv} étant le temps nécessaire au gaz vecteur pour traverser la colonne. D'autre part, le facteur de rétention R_f est une caractéristique du couple soluté-solvant, et il varie avec la température absolue T selon l'expression

$$R_{f_i} = \left[1 + A_i \cdot \exp\frac{\Delta \bar{H}_{v_i}^{\circ}}{R \cdot T}\right]^{-1} \tag{12}$$

dans laquelle R est la constante des gaz parfaits, A_i est une constante caractéristique du soluté i et $\Delta \bar{H}_{v_i}$ est l'enthalpie standard de vaporisation du soluté i en solution avec le solvant de la colonne. L'équation différentielle 9 est donc transcendante. Aussi nous l'avons résolue de façon numérique avec un ordinateur et une table traçante (Hewlett-Packard).

RÉSULTATS ET INFLUENCE DES PARAMÈTRES

Nous avons tout d'abord vérifié, lors d'un grand nombre d'expériences réalisées avec les solutés cités, et dans des conditions opératoires différentes que les valeurs des temps de rétention calculés en utilisant les éqns. 2, 9 et 10, coıncident bien avec les valeurs expérimentales correspondantes. On a pu remarquer un accord convenable entre ces deux séries de valeurs, puisque l'erreur relative excède rarement 5%. L'utilisation d'une équation plus sophistiquée pour calculer l'abscisse x_l parcourue pendant le temps d'inversion t_{bf} réduit assez peu l'erreur relative.

Nous pouvons donc préciser l'influence sur le temps de rétention des solutés, des différents paramètres qui interviennent: le temps d'inversion t_{bf} , la vitesse d'élévation de la température à la sortie de la colonne V_0 , la température initiale de la colonne T_{00} .

Influence du temps d'inversion tos

Nous avons précisé l'influence du temps d'inversion t_{bf} sur la valeur du temps t'_r de séjour du soluté durant l'inversion et la programmation du gradient longitudinal de température, en maintenant les valeurs des autres paramètres constants (V_0 et T_{00}).

Nous avons représenté (Fig. 2) la variation du temps t', (sec) en fonction du

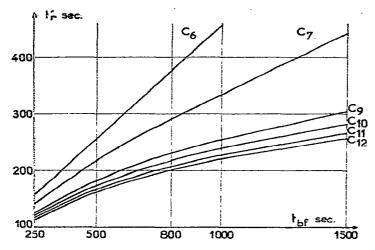


Fig. 2. Variation du temps de séjour t', (sec) du soluté dans la colonne durant l'inversion avec notre méthode en fonction du temps d'inversion t_{bf} (sec). $V_0 = 0.25$ °C/sec, $T_{00} = 333$ °K. Solutés: n-hexane (C6), n-heptane (C7), n-nonane (C9), n-décane (C10), n-undécane (C11), n-dodécane (C12).

temps d'inversion t_{bf} (sec), en maintenant $V_0 = 0.25$ °C/sec et $T_{00} = 333$ °K. Nous constatons ainsi que la valeur du temps t'_r croît assez rapidement avec le temps d'inversion, même pour les solutés peu volatils. D'autre part, nous voyons que les solutés élués avec notre méthode sont relativement bien séparés. Cette séparation est meilleure lorsque l'on choisit un temps d'inversion élevé. Cependant, même avec un temps d'inversion de l'ordre de 800 sec, on peut réaliser une séparation convenable des solutés.

Nous le montrons sur les Figs. 3 et 4 où sont représentés les chromatogrammes de trois solutés (n-hexane, n-heptane et n-nonane) qui ont subi le backflushing dans deux cas différents: Fig. 3 en chromatographie classique isotherme, Fig. 4 avec notre méthode. Avec la chromatographie classique, les trois solutés qui ont subi l'inversion sont réunis en un seul pic étalé et peu facile d'ailleurs à exploiter pour une analyse quantitative. Avec notre méthode, les trois solutés sont bien séparés et se présentent sous la forme de pics très fins.

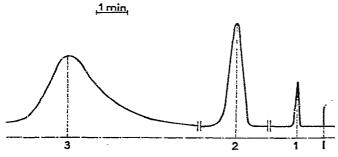


Fig. 3. Chromatographie avec inversion classique et $t_{bf} = 784$ sec. Élués en sens direct, 1 = air et 2 = n-pentane; élués en sens inverse, 3 = n-nonane + n-heptane + n-hexane. $T_{00} = 333$ °K.

Fig. 4. Chromatographie avec notre méthode et $t_{bf} = 784$ sec. Élués en sens direct, 1 = air, 2 = n-pentane; élués en sens inverse, 3 = n-nonane, 4 = n-heptane, 5 = n-hexane. $V_0 = 0.2$ °C/sec, $T_{00} = 333$ °K.

D'autre part, notre méthode permet de réaliser un gain de temps appréciable par rapport à la chromatographie avec inversion isotherme classique. Les valeurs du Tableau II le montrent nettement. Elles sont obtenues avec les conditions opératoires $T_{00} = 333$ °K, $V_0 = 0.2$ °C/sec et $t_{bf} = 784$ sec.

TABLEAU II

VALEURS DES TEMPS OBTENUS EN CHROMATOGRAPHIE AVEC INVERSION CLASSIQUE t'', ET AVEC NOTRE MÉTHODE t',

 $T_{00} = 333$ °K, $V_0 = 0.2$ °C/sec, $t_{bf} = 784$ sec.

Temps (sec)	n-Hexane	n-Heptane	n-Nonane
t",	1374	1374	1374
t_{τ}'	1074	1016	980

Nous constatons avec beaucoup plus de netteté qu'en chromatographie avec inversion classique⁵, que notre méthode permet aux solutés les plus volatils de sortir les premiers.

Nous présentons dans le Tableau III les valeurs des grandeurs intermédiaires x_t et T_r , correspondant aux différents solutés élués avec notre méthode, en maintenant $V_0 = 0.25$ °C/sec et $T_{00} = 333$ °K.

Influence de la vitesse V_0 de la programmation du gradient longitudinal de temperature Nous avons précisé l'influence de la vitesse de la programmation du gradient longitudinal de température, V_0 , sur le temps t', mis par les solutés à ressortir de la colonne durant l'inversion.

Nous avons réalisé des chromatographies successives avec différentes valeurs de V_0 , en maintenant constantes les valeurs des autres paramètres. Nous avons réuni dans le Tableau IV les valeurs du temps t'_r des solutés élués dans deux cas.

TABLEAU III

VARIATION DES CARACTÉRISTIQUES DE LA RÉTENTION DES SOLUTÉS ÉLUÉS AVEC NOTRE MÉTHODE EN FONCTION DE 161

 $V_0 = 0.25$ °C/sec; $T_{00} = 333$ °K. $C_6 = n$ -hexane, etc.

tos (sec)	Soluté	t _r (sec)	x_i (cm)	t", (sec)	T_r (°K)	t', (sec)
250	C6	940	146.8	250	372	156
	C7	2300	178.3	250	368	140
	C9	12 580*	196.0	250	364	124
	C10	30 000*	198.3	250	363	120
-	C11	52 800*	199	250	362	116
	C12	83 200*	199.4	250	361	112
500	C6	940	93.6	500	397	256
	C7	2300	156.5	500	387.5	218
	C9	1258	192	500	379	184
	C10	3000*	196.7	500	376.7	175
	C11	52 800*	198.1	500	374.7	167
	C12	83 200*	198.8	500	373.7	163
1000	C6	940	213	sort en sens direct		
	C7	2300	113	1000	416.5	334
	C9	12 580*	184	1000	396.7	255
•	C10	30 000*	196.2	1000	392.9	240
	C11	52 800*	196.2	1000	389.9	228
	C12	83 200*	197.6	1000	388.2	220.8

^{*} Les valeurs des temps t_r marquées d'un astérisque sont déterminées par extrapolation, en utilisant la loi de variation de R_f avec la température (éqn. 12).

TABLEAU IV VARIATION DE t', (sec) DES SOLUTÉS AVEC V_0 $T_{00} = 333$ °K; $C_6 = n$ -hexane, etc.

tos (sec)	V_0 (°C/sec)	Soluté						
		C6	C7	C9	C10	CII	CI2	
800	0	800	800	800	800	800	800	
	0.10	506	425	360	345	334	326	
	0.25	378	292	230	218	207	201	
	0.50	289	206	156	145	137	132	
	0.75	244	166	121	112	105	101	
1500	0	1500	1500	1500	1500	1500	1500	
	0.25		444	305	283	267	258	
	0.50		312	199	182	165	164	
	0.75		251	153	139	125	124	

Nous avons représenté sur la Fig. 5 la variation du temps t', correspondant aux différents solutés en fonction de la valeur donnée à la vitesse de la programmation de la température V_0 , avec les conditions opératoires suivantes: $T_{00} = 333$ °K, $t_{bf} = 800$ sec (ler cas du Tableau IV). L'examen de la Fig. 5 montre nettement l'influence très favorable de la vitesse de la programmation de température V_0 sur le temps de rétention t'_r du soluté. Le gain de temps obtenu est d'autant plus important que les

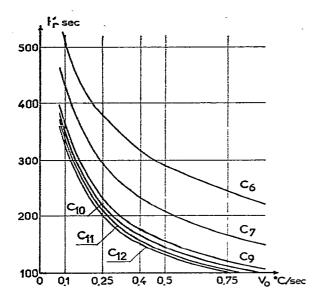


Fig. 5. Variation du temps t'_r (sec) avec la vitesse V_0 de la programmation du gradient longitudinal de température. $T_{00} = 333$ °K, $t_{bf} = 800$ sec.

solutés sont moins volatils. D'autre part, ce gain de temps croît très vite avec la valeur de V_0 .

Les valeurs du temps t'_r réunies dans le Tableau IV permettent de constater en outre que le gain de temps permis par notre méthode devient considérable lorsque l'on utilise une valeur élevée du temps d'inversion t_{bf} . Ainsi, les valeurs obtenues pour le temps t'_r des solutés est du même ordre de grandeur dans les deux cas, lorsque $t_{bf} = 800$ sec et lorsque $t_{bf} = 1500$ sec.

Influence de la temperature initiale de la colonne T_{00}

Nous avons précisé l'influence de la température initiale de la colonne T_{00} sur la valeur du temps t'_r mis par les solutés à ressortir de la colonne en sens inverse. Les autres paramètres V_0 et t_{br} sont maintenus constants durant ces expériences.

Nous avons réuni dans le Tableau V les valeurs de l'abscisse x_l situant la position des solutés au temps d'inversion, et les valeurs des temps t'_r , pour différentes valeurs de la température initiale de la colonne T_{00} .

Sur la Fig. 6 apparaît la variation du temps t'_r avec la valeur choisie pour la température initiale de la colonne T_{00} . Nous constatons ainsi que le temps t'_r croît avec la température initiale T_{00} . L'explication de ce phénomène apparaît dans le Tableau V: en effet lorsque T_{00} est choisie plus élevée, la valeur de x_t est plus réduite, le soluté est entré plus profondément dans la colonne. Il n'en demeure pas moins que cette élévation du temps t'_r avec la température initiale T_{00} n'est pas prohibitive, puisqu'il augmente d'à peine 50% lorsque T_{00} passe de 333 à 413°K.

Un autre fait concerne l'efficacité de la séparation permise par notre méthode. Pour chaque température T_{00} , l'efficacité de la séparation n'est pas la même pour tous les couples de solutés voisins. Ainsi, la séparation est optimale pour le couple

TABLEAU V INFLUENCE DE LA TEMPÉRATURE INITIALE T_{00} $V_0 = 0.25$ °C/sec, $t_{bf} = 800$ sec. $C_6 = n$ -hexane, etc.

Soluté	T ₀₀ (°K)										
	333		353		373		393				
	$x_i(cm)$	t'r (sec)	$x_i(cm)$	t'r (sec)	x _t (cm)	t'r (sec)	x _t (cm)	t'r (sec)			
C 6	30	378	_	_	_		-	-			
C7	130	292	72	339	_	_	-	_			
C9	187	230	172	252	143	278	94	322			
C10	194.7	218	187	235	173	257	147	284			
C11	197	207	192	223	183	242	164	264			
C12	198	201	195	217	188	234	175	254			

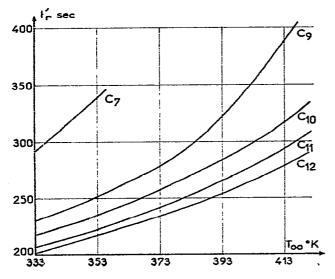


Fig. 6. Variation du temps t'_r (sec) avec la valeur T_{00} de la température initiale de la colonne. $t_{bf} = 800$ sec, $V_0 = 0.25$ °C/sec.

hexane-heptane à 333°K, pour le couple heptane-nonane à 353°K, et pour le nonanedécane à 393°K.

Ce résultat est intéressant car il montre que l'on peut définir les conditions opératoires de température initiale de la colonne permettant de réaliser la séparation des solutés qui ont subi l'inversion, et ceci quelle que soit leur volatilité.

CONCLUSIONS

La méthode que nous avons présentée permet le couplage de la chromatographie avec inversion du sens du gaz vecteur et de la programmation du gradient longitudinal positif de température qui fonctionne durant l'inversion. Cette méthode présente l'intérêt fondamental de la chromatographie avec inversion du sens du gaz vecteur isotherme classique. Ainsi, les solutés qui ont subi l'inversion sortent avec un temps de rétention inférieur au double du temps d'inversion t_{bf} , quelle que soit la volatilité de ces solutés.

Mais notre méthode présente des avantages appréciables sur la chromatographie avec inversion classique: d'une part, elle permet un gain de temps, d'autant plus important que l'on choisit une valeur élevée de la vitesse de la programmation du gradient longitudinal de température. D'autre part, notre méthode permet de réaliser simultanément un resserrement des pics qui facilite l'analyse quantitative et améliore la sensibilité, et une séparation convenable des solutés qui ont subi l'inversion. Cette séparation des solutés, qui constitue l'avantage essentiel de la méthode, peut être rendue optimale en choisissant de façon convenable le temps d'inversion, et surtout la valeur de la température initiale de la colonne.

RÉSUMÉ

Une méthode nouvelle de chromatographie est présentée, couplant l'inversion du sens du gaz vecteur (backflushing) et la programmation du gradient longitudinal positif de température. Durant le sens direct du gaz vecteur, la chromatographie est isotherme durant le temps t_{bf} . Au temps t_{bf} , le sens du gaz vecteur est inversé, et simultanément est réalisée une programmation du gradient longitudinal positif de température. La vitesse d'élévation du gradient est constante et la sortie de la colonne après l'inversion a la température la plus élevée.

La méthode permet de retrouver l'avantage de l'inversion qui est de pouvoir séparer les composés volatils durant le sens direct, et d'éluer les composés les moins volatils en sens inverse. L'intérêt supplémentaire réside dans le fait que notre méthode permet de séparer assez bien les composés les moins volatils qui ont subi l'inversion.

La théorie de la méthode est élaborée et les équations obtenues nous ont permis de préciser l'influence des paramètres: le temps de backflushing, la vitesse de la programmation du gradient de température, la température initiale.

BIBLIOGRAPHIE

- 1 R. Villalobos, R. O. Brace et J. Johns, Int. Symp. Gas Chromatography, 2nd, June 1959, Academ ic Press, New York, 1959.
- 2 J.-M. Vergnaud, E. Degeorges et J. Normand, Bull. Soc. Chim. Fr., (1964) 1904.
- 3 M. Fatscher, Thèse, Université de Lyon, Lyon, 1971, p. 77.
- 4 M. Coudert et J.-M. Vergnaud, J. Chromatogr., 54 (1971) 1.
- 5 J.-M. Vergnaud, Chim. Anal. (Paris), 49 (1967) 183.